L-Lactate-Mediated Neuroprotection against Glutamate-Induced Excitotoxicity Requires ARALAR/AGC1.
نویسندگان
چکیده
UNLABELLED ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation. ARALAR deficiency did not aggravate glutamate-induced neuronal death in vitro, although glutamate-stimulated respiration was impaired. In contrast, the presence of L-lactate as an additional source protected against glutamate-induced neuronal death in control, but not ARALAR-deficient neurons.l-Lactate supplementation increased glutamate-stimulated respiration partially prevented the decrease in the cytosolic ATP/ADP ratio induced by glutamate and substantially diminished mitochondrial accumulation of 8-oxoguanosine, a marker of reactive oxygen species production, only in the presence, but not the absence, of ARALAR. In addition,l-lactate potentiated glutamate-induced increase in cytosolic Ca(2+), in a way independent of the presence of ARALAR. Interestingly,in vivo, the loss of half-a-dose of ARALAR in aralar(+/-)mice enhanced kainic acid-induced seizures and neuronal damage with respect to control animals, in a model of excitotoxicity in which increased L-lactate levels and L-lactate consumption have been previously proven. These results suggest that,in vivo, an inefficient operation of the shuttle in the aralar hemizygous mice prevents the protective role of L-lactate on glutamate excitotoxiciy and that the entry and oxidation of L-lactate through ARALAR-MAS pathway is required for its neuroprotective function. SIGNIFICANCE STATEMENT Lactate now stands as a metabolite necessary for multiple functions in the brain and is an alternative energy source during excitotoxic brain injury. Here we find that the absence of a functional malate-aspartate NADH shuttle caused by aralar/AGC1 disruption causes a block in lactate utilization by neurons, which prevents the protective role of lactate on excitotoxicity, but not glutamate excitotoxicity itself. Thus, failure to use lactate is detrimental and is possibly responsible for the exacerbated in vivo excitotoxicity in aralar(+/-)mice.
منابع مشابه
L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade.
Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruv...
متن کاملTNFR2 mediated neuroprotection via PI3K/NF-κB pathway 1 TNF mediated neuroprotection against glutamate induced excitotoxicity is enhanced by NMDA receptor activation: Essential role of a TNF receptor 2 mediated, PI3 kinase dependent NF-κB pathway
متن کامل
Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors.
Glutamate-induced excitotoxicity is thought to play an important role in several neurodegenerative diseases in the central nervous system (CNS). In this study, neuroprotection against glutamate-induced excitotoxicity was analyzed using acetylcholine (ACh), nicotine and the α7 specific nicotinic acetylcholine receptor (α7 nAChR) agonist, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hyd...
متن کاملRole of AGC1/aralar in the metabolic synergies between neuron and glia.
Brain energetic requirements are elevated due to the high cost of impulse transmission and information storage, and are met mainly by glucose oxidation. The energy needs are closely matched by metabolic regulation, which requires the close cooperation of neurons and astrocytes and involves highly regulated fluxes of metabolites between cells. The metabolism in each type of cell is determined in...
متن کاملDeficient glucose and glutamine metabolism in Aralar/AGC1/Slc25a12 knockout mice contributes to altered visual function
PURPOSE To characterize the vision phenotype of mice lacking Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier mutated in global cerebral hypomyelination (OMIM 612949). METHODS We tested overnight dark-adapted control and aralar-deficient mice for the standard full electroretinogram (ERG) response. The metabolic stress of dark-adaptation was reduced by 5 min illumination aft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 16 شماره
صفحات -
تاریخ انتشار 2016